On Injectivity in Locally Presentable Categories

نویسندگان

  • JIRÍ ADÁMEK
  • JIRÍ ROSICKY
  • JIRI ADAMEK
  • JIRI ROSICKY
چکیده

Classes of objects injective w.r.t. specified morphisms are known to be closed under products and retracts. We prove the converse: a class of objects in a locally presentable category is an injectivity class iff it is closed under products and retracts. This result requires a certain large-cardinal principle. We characterize classes of objects injective w.r.t. a small collection of morphisms: they are precisely the accessible subcategories closed under products and /c-filtered colimits. Assuming the (large-cardinal) Vopênka's principle, the accessibility can be left out. As a corollary, we solve a problem of L. Fuchs concerning injectivity classes of abelian groups. Finally, we introduce a weak concept of reflectivity, called cone reflectivity, and we prove that under Vopênka's principle all subcategories of locally presentable categories are cone reflective. Several open questions are formulated, e.g., does each topological space have a largest (non-7*2) compactification?

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algebraically Closed and Existentially Closed Substructures in Categorical Context

We investigate categorical versions of algebraically closed (= pure) embeddings, existentially closed embeddings, and the like, in the context of locally presentable categories. The definitions of S. Fakir [Fa, 75], as well as some of his results, are revisited and extended. Related preservation theorems are obtained, and a new proof of the main result of Rosický, Adámek and Borceux ([RAB, 02])...

متن کامل

MORE ON INJECTIVITY IN LOCALLY PRESENTABLE CATEGORIES Dedicated to Horst Herrlich on the occasion of his 60th birthday

Injectivity with respect to morphisms having λ-presentable domains and codomains is characterized: such injectivity classes are precisely those closed under products, λ-directed colimits, and λ-pure subobjects. This sharpens the result of the first two authors (Trans. Amer. Math. Soc. 336 (1993), 785-804). In contrast, for geometric logic an example is found of a class closed under directed col...

متن کامل

Approximate Injectivity

In a locally λ-presentable category, with λ a regular cardinal, classes of objects that are injective with respect to a family of morphisms whose domains and codomains are λ-presentable, are known to be characterized by their closure under products, λ-directed colimits and λ-pure subobjects. Replacing the strict commutativity of diagrams by “commutativity up to ε”, this paper provides an “appro...

متن کامل

Homological Algebra for Banach Modules?

Injectivity is an important concept in algebra, homotopy theory and elsewhere. We study the ‘injectivity consequence’ of morphisms of a category: a morphism h is a consequence of a set H of morphisms if every object injective w.r.t. all members of H is also injective w.r.t. h. We formulate a very simple logic which is always sound, i.e., whenever a proof of h from assumptions in H exists, then ...

متن کامل

ar X iv : m at h / 05 09 31 8 v 1 [ m at h . C T ] 1 4 Se p 20 05 λ - PRESENTABLE MORPHISMS , INJECTIVITY AND ( WEAK ) FACTORIZATION SYSTEMS

We show that every λm-injectivity class (i.e., the class of all the objects injective with respect to some class of λ-presentable morphisms) is a weakly reflective subcategory determined by a functorial weak factorization system cofibrantly generated by a class of λ-presentable morphisms. This was known for small-injectivity classes, and referred to as the “small object argument”. An analogous ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010